El hemograma como predictor en la infección por SARS-CoV-2

Autores/as

  • Germán Campuzano Maya Universidad de Antioquia

DOI:

https://doi.org/10.56050/01205498.1666

Palabras clave:

SARS-CoV-2, Covid-19, hematología, hemograma, predictores

Resumen

La pandemia del nuevo coronavirus, iniciada a finales de diciembre de 2019 en Wuhan, provincia de Hubei, China, como una neumonía causada por un nuevo virus, ha creado un pandemónium en la atención médica y tiene los sistemas de salud desbordados en todo el mundo. El hemograma, una de las pruebas más solicitadas al laboratorio clínico, imprescindible en la práctica médica del día a día, en el contexto del paciente infectado por SARS-CoV-2 suministra predictores o biomarcadores que han demostrado ser eficientes como la neutrofilia, la linfopenia, la trombocitopenia, el índice neutrófilos/ linfocitos, el ancho de distribución de los eritrocitos y el ancho de distribución de los monocitos para predecir la evolución del COVID-19. Además de los predictores, el hemograma provee parámetros de utilidad clínica como la hemoglobina reticulocitaria, el índice de plaquetas inmaduras y la morfología en los extendidos de sangre periférica que permiten un manejo más eficiente de la enfermedad. Se presenta una revisión de la literatura médica indexada, orientada a identificar en el hemograma predictores y herramientas de diagnóstico de utilidad en el curso de la infección por SARS-CoV-2.

Biografía del autor/a

Germán Campuzano Maya, Universidad de Antioquia

MD. Médico especialista en Hematología y Patología Clínica. Profesor, Ad honorem, Facultad de Medicina, Universidad de Antioquia. Expresidente y Miembro Honorario Academia de Medicina de Medellín.

Referencias bibliográficas

1.Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382:727-733.
2. WHO Coronavirus (COVID-19) Dashboard [Internet]. Covid19.who.int. 2022 [Consultado 31 enero 2022].Disponible en: https://covid19.who.int/.
3. República de Colombia, Instituto Nacional de Salud (INS).Coronavirus Colombia [Internet]. Ins.gov.co. 2022 [consultado 31 enero 2022]. Disponible en:
https://www.ins.gov.co/Noticias/paginas/coronavirus.aspx,
4. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines.[Internet]. National Institutes of Health.2022 [consultado 31 enero 2022]. Disponible en:
https://www.covid19treatmentguidelines.nih.gov/.
5. Campuzano-Maya G. Del hemograma manual al hemograma de cuarta generación. Medicina & Laboratorio. 2007;13:551-550.
6. Urbano M, Costa E, Geraldes C. Hematological changes in SARS-COV-2 positive patients. Hematol Transfus Cell Ther 2022;.
7. Taneri PE, Gomez-Ochoa SA, Llanaj E, Raguindin PF, Rojas L, Roa-Díaz ZM, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol 2020;35:763-773.
8. Thavendiranathan P, Bagai A, Ebidia A, Detsky AS, Choudhry NK. Do blood tests cause anemia in hospitalized patients? The effect of diagnostic phlebotomy on hemoglobin and hematocrit levels. J Gen Intern Med. 2005;20:520-524.
9. Maslov DV, Simenson V, Jain S, Badari A. COVID-19 and cold agglutinin hemolytic anemia. TH Open. 2020;4(3):e175-e177.
10. Liput JR, Jordan K, Patadia R, Kander E. Warm autoimmune hemolytic anemia associated with asymptomatic SARS-CoV-2 infection. Cureus. 2021;13:e14101.
11. Aguilar J, Averbukh Y. Hemolytic anemia in a Ggucose6-phosphate dehydrogenase-deficient patient receiving hydroxychloroquine for COVID-19: A case report. Perm J. 2020;24:20.158.
12. Sweeney JM, Barouqa M, Krause GJ, Gonzalez-Lugo JD, Rahman S, Gil MR. Evidence for secondary thrombotic microangiopathy in COVID-19. medRxiv 2020;2020.10.20.20215608.
13. Tehrani HA, Darnahal M, Vaezi M, Haghighi S. COVID-19 associated thrombotic thrombocytopenic purpura (TTP). A case series and mini-review. Int Immunopharmacol. 2021;93:107397.
14. Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci. 2015;52:86-105.
15. Patel KV, Semba RD, Ferrucci L, et al. Red cell distribution width and mortality in older adults: a meta-analysis. J Gerontol A Biol Sci Med Sci. 2010;65:258-265.
16. Wang C, Zhang H, Cao X, et al. Red cell distribution width (RDW): a prognostic indicator of severe COVID-19. Ann Transl Med. 2020;8:1230.
17. Henry BM, Benoit JL, Benoit S, et al. Red blood cell distribution width (RDW) predicts COVID-19 severity: A prospective, observational study from the Cincinnati SARS-CoV-2 Emergency Department Cohort. Diagnostics (Basel). 2020;10(9):618.
18. Soni M, Gopalakrishnan R. Significance of RDW in predicting mortality in COVID-19-An analysis of 622 cases. Int J Lab Hematol. 2021;43(4):O221-O223.
19. Sahu KK, Borogovac A, Cerny J. COVID-19 related immune hemolysis and thrombocytopenia. J Med Virol. 2021;93:1164-1170.
20. Kuipers MT, van Zwieten R, Heijmans J, et al. Glucose6-phosphate dehydrogenase deficiency-associated hemolysis and methemoglobinemia in a COVID-19 patient treated with chloroquine. Am J Hematol. 2020;95:E194- E196.
21. Campuzano-Maya G, Guevara-Arismendy NM. Hemoglobina reticulocitaria: un nuevo parámetro del hemograma de gran valor en el diagnóstico y manejo de la eritropoeyesis deficiente en hierro. Medicina & Laboratorio. 2015;21:11-42.
22. Mitsuiki K, Harada A, Miyata Y. Reticulocyte hemoglobin content in hemodialysis patients with acute infection. Clin Exp Nephrol. 2004;8:257-262.
23. Fernández R, Tubau I, Masip J, Muñoz L, Roig I, Artigas A. Low reticulocyte hemoglobin content is associated with a higher blood transfusion rate in critically ill patients: a cohort study. Anesthesiology. 2010;112:1211-1215. 1
24. Fan BE, Chong VCL, Chan SSW, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol. 2020;95:E131-E134.
25. Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARSCoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020;108:17-41.
26. Kim GU, Kim MJ, Ra SH, et al. Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19. Clin Microbiol Infect. 2020;26:948 e941-948 e943.
27. Yamada T, Wakabayashi M, Yamaji T, et al. Value of leukocytosis and elevated C-reactive protein in predicting severe coronavirus 2019 (COVID-19): A systematic review and meta-analysis. Clin Chim Acta. 2020;509:235- 243.
28. Bunte K, Beikler T. Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. Int J Mol Sci. 2019;20. .
29. Dutzan N, Abusleme L. T Helper 17 Cells as Pathogenic Drivers of Periodontitis. Adv Exp Med Biol. 2019;1197:107-117.
30. Kosmeri C, Koumpis E, Tsabouri S, Siomou E, Makis A. Hematological manifestations of SARS-CoV-2 in children. Pediatr Blood Cancer. 2020;67:e28745.
31. Keski H. Hematological and Inflammatory Parameters to Predict the Prognosis in COVID-19. Indian J Hematol Blood Transfus. 2021;37(4):534-542.
32. Shahin W, Rabie W, Alyossof O, Alasiri M, Alfaki M, Mahmoud E, et al. COVID-19 in children ranging from asymptomatic to a multi-system inflammatory disease: A single-center study. Saudi Med J. 2021;42(3):299-305.
33. Meizlish ML, Pine AB, Bishai JD, Goshua G, Nadelmann ER, Simonov M, et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 2021;5(5):1164-1177.
34. Lippi G, Plebani M. The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks. Clin Chem Lab Med. 2020;58(7):1063-1069.
35. Mitra A, Dwyre DM, Schivo M, et al. Leukoerythroblastic reaction in a patient with COVID-19 infection. Am J Hematol. 2020;95(8):999-1000.
36. Chaves F, Tierno B, Xu D. Neutrophil volume distribution width: a new automated hematologic parameter for acute infection. Arch Pathol Lab Med. 2006;130(3):378-380.
37. Lutfi F, Benyounes A, Farrukh N, Bork J, Duong V. Agranulocytosis Following COVID-19 Recovery. Cureus. 2020;12(7):e9463.
38. Karimi Shahri M, Niazkar HR, Rad F. COVID-19 and hematology findings based on the current evidences: A puzzle with many missing pieces. Int J Lab Hematol. 2021;43(2):160-168.
39. Zhang ZL, Hou YL, Li DT, Li FZ. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand J Clin Lab Invest. 2020;80(6):1-7.
40. Huang R, Xie L, He J, Dong H, Liu T. Association between the peripheral blood eosinophil counts and COVID-19: A meta-analysis. Medicine (Baltimore) 2021;100(23):e26047. 1
41. Xuan W, Jiang X, Huang L, Pan S, Chen C, Zhang X, et al. Predictive aalue of eosinophil count on COVID-19 disease progression and outcomes, a retrospective study of Leishenshan Hospital in Wuhan, China. J Intensive Care Med. 2022;37(3):359-365.
42. Liu F, Xu A, Zhang Y, Xuan W, Yan T, Pan K, et al. Patients of COVID-19 may benefit from sustained lopinavircombined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis 2020;95:183-191.
43. Tong X, Cheng A, Yuan X, Zhong X, Wang H, Zhou W, et al. Characteristics of peripheral white blood cells in COVID-19 patients revealed by a retrospective cohort study. BMC Infect Dis. 2021;21(1):1236.
44. Murdaca G, Di Gioacchino M, Greco M, Borro M, Paladin F, Petrarca C, et al. Basophils and mast cells in COVID-19 pathogenesis. Cells 2021;10(10):2754.
45. Zhao Q, Meng M, Kumar R, Wu Y, Huang J, Deng, et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int J Infect Dis. 2020;96:131-135.
46. Huang I, Pranata R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and metaanalysis. J Intensive Care. 2020;8:36.
47. Zaboli E, Majidi H, Alizadeh-Navaei R, HedayatizadehOmran A, Asgarian-Osman H, Larijani LV, et al. Lymphopenia and lung complications in patients with coronavirus disease-2019 (COVID-19): A retrospective study based on clinical data. J Med Virol. 2021;93(9):1524-5431.
48. Ziadi A, Hachimi A, Admou B, Hazime R, Brahim I, Douirek F, et al. Lymphopenia in critically ill COVID-19 patients: A predictor factor of severity and mortality. Int J Lab Hematol 2021;43(1):e38-e40.
49. Allegra A, Di Gioacchino M, Tonacci A, Musolino C, Gangemi S. Immunopathology of SARS-CoV-2 infection: Immune cells and mediators, Prognostic factors, and immune-therapeutic implications. Int J Mol Sci. 2020;21(13):4782.
50. Garcia LF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol. 2020;11:1441.
51. Javanian M, Bayani M, Shokri M, Sadeghi M, Babazadeh A, Yaganeh B, et al. Clinical and laboratory findings from patients with COVID-19 pneumonia in Babol North of Iran: a retrospective cohort study. Rom J Intern Med. 2020;58(3):161-167.
52. Rahman A, Niloofa R, Jayarajah U, De Mel S, Abeysuriya V, Seneviratne SL. Hematological abnormalities in COVID-19: A narrative review. Am J Trop Med Hyg. 2021;104(4):1188-1201.
53. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev. 2020;7(6):998-1002.
54. Zhang D, Guo R, Lei L, Liu H, Wang Y, Wang Y, Quian H, et al. Frontline Science: COVID-19 infection induces readily detectable morphologic and inflammation-related phenotypic changes in peripheral blood monocytes. J Leukoc Biol. 2021;109(1):13-22.
55. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020;55:102763.
56. Sanchez-Cerrillo I, Landete P, Aldave B, Sanchez-alonso S, Sanchez-Azofra A, Marcos-Jimenez A, et al. Differential redistribution of activated monocyte and dendritic cell subsets to the lung associates with severity of COVID-19. medRxiv. 2020;2020.05.13.20100925.
57. Crouser ED, Parrillo JE, Martin GS, Huang D, Hausfater P, Grigarov I, et al. Monocyte distribution width enhances early sepsis detection in the emergency department beyond SIRS and qSOFA. J Intensive Care. 2020;8:33.
58. Mardi D, Fwity B, Lobmann R, Ambrosch A. Mean cell volume of neutrophils and monocytes compared with Creactive protein, interleukin-6 and white blood cell count for prediction of sepsis and nonsystemic bacterial infections. Int J Lab Hematol. 2010;32(4):410-418.
59. Lin HA, Lin SF, Chang HW, Lee YJ, Chen RJ, Hou SK. Clinical impact of monocyte distribution width and neutrophil-to-lymphocyte ratio for distinguishing COVID-19 and influenza from other upper respiratory tract infections: A pilot study. PLoS One. 2020;15(11):e0241262.
60. Bashash D, Hosseini-Baharanchi FS, Rezaie-Tavirani M, Safa-M, Dilmaghani NA, Faranouush M, et al. The Prognostic Value of Thrombocytopenia in COVID-19 Patients; a Systematic Review and Meta-Analysis. Arch Acad Emerg Med. 2020;8(1):e75.
61. Bao C, Tao X, Cui W, Yi B, Pan T, Young K, et al. SARSCoV-2 induced thrombocytopenia as an important biomarker significantly correlated with abnormal coagulation function, increased intravascular blood clot risk and mortality in COVID-19 patients. Exp Hematol Oncol. 2020;9:16.
62. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020;506:145-148.
63. Pranata R, Lim MA, Yonas E, et al. Thrombocytopenia as a prognostic marker in COVID-19 patients: diagnostic test accuracy meta-analysis. Epidemiol Infect. 2021;149:e40. 1
64. Zong X, Gu Y, Yu H, Li Z, Wang Y. Thrombocytopenia Is Associated with COVID-19 Severity and Outcome: An Updated Meta-Analysis of 5637 Patients with Multiple Outcomes. Lab Med. 2021;52:10-15.
65. Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020.
66. Yang M, Ng MH, Li CK. Thrombocytopenia in patients with severe acute respiratory syndrome (review). Hematology. 2005;10(2):101-105. 1
67. Seyoum M, Enawgaw B, Melku M. Human blood platelets and viruses: defense mechanism and role in the removal of viral pathogens. Thromb J. 2018;16:16.
68. Bomhof G, Mutsaers P, Leebeek FWG, et al. COVID19-associated immune thrombocytopenia. Br J Haematol. 2020;190:e61-e64.
69. Zucker-Franklin D, Philipp CS. Platelet production in the pulmonary capillary bed: new ultrastructural evidence for an old concept. Am J Pathol. 2000;157:69-74.
70. Liu Y, Sun W, Guo Y, et al. Association between platelet parameters and mortality in coronavirus disease 2019: Retrospective cohort study. Platelets 2020;31:490-496.1
71. Phan XT, Nguyen TH, Tran TT, et al. Suspected heparininduced thrombocytopenia in a COVID-19 patient on extracorporeal membrane oxygenation support: a case report. Thromb J. 2020;18:37. 1
72. Li H, Wang B, Ning L, Luo Y, Xiang S. Transient appearance of EDTA dependent pseudothrombocytopenia in a patient with 2019 novel coronavirus pneumonia. Platelets. 2020;31:825-826.
73. Zucker-Franklin D. The effect of viral infections on platelets and megakaryocytes. Semin Hematol. 1994;31:329- 337.
74. Lucijanic M, Krecak I, Soric E, et al. Thrombocytosis in COVID-19 patients without myeloproliferative neoplasms is associated with better prognosis but higher rate of venous thromboembolism. Blood Cancer J 2021;11:189.
75. Anguiano-Alvarez VM, Maza-Larrea JA, Rosado-Hernandez FJ, Rojas-Velasco G, Izaguirre-Avila R. Ruxolitinib-induced extreme thrombocytosis in a COVID-19 patient. Blood Res. 2021;56:201-202.
76. Campuzano-Maya G. Estudio del paciente con hiperferritinemia. Medicicina & Laboratorio 2017;23:411-442.
77. Bat T, Steinberg SM, Childs R, et al. Active thrombopoiesis is associated with worse severity and activity of chronic GVHD. Bone Marrow Transplant 2013;48:1569- 1573.
78. Cohen A, Harari E, Cipok M, et al. Immature platelets in patients hospitalized with Covid-19. J Thromb Thrombolysis 2020.
79. Cohen A, Harari E, Cipok M, Laish-Farkash A, Bryk G, Yahud E, et al. Immature platelets in patients hospitalized with Covid-19. J Thromb Thrombolysis. 2021;51(3):608- 616. 1
80. Welder D, Jeon-Slaughter H, Ashraf B, Choi SH, Chen W, Ibrahim I, et al. Immature platelets as a biomarker for disease severity and mortality in COVID-19 patients. Br J Haematol 2021;194(3):530-536.
81. Nuhrenberg TG, Stockle J, Marini F, Zurek M, Grüning B, Benes V, et al. Impact of high platelet turnover on the platelet transcriptome: Results from platelet RNA-sequencing in patients with sepsis. PLoS One 2022;17(1):e0260222. 1
82. Ding X, Yu Y, Lu B, Huo J, Chen M, Kang Y, et al. Dynamic profile and clinical implications of hematological parameters in hospitalized patients with coronavirus disease 2019. Clin Chem Lab Med 2020;58(8):1365-1371.
83. Zhou X, Cheng Z, Luo L, Zhu Y, Lin W, Ming Z, et al. Incidence and impact of disseminated intravascular coagulation in COVID-19 a systematic review and metaanalysis. Thromb Res. 2021;201(8):23-29.
84. Santosh T, Shankaralingappa A. Peripheral smear in COVID 19: a case report. Hematol Transfus Cell Ther. 2021:43(4):545-547.
85. Zahorec R. Ratio of neutrophil to lymphocyte counts- -rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy 2001;102(1):5- 14.
86. Niessen R, Bihin B, Gourdin M, Yombi JC, Cornu O, Forget P. Prediction of postoperative mortality in elderly patient with hip fractures: a single-centre, retrospective cohort study. BMC Anesthesiol 2018;18(1):183.
87. Faria SS, Fernandes PC, Jr., Silva MJ, Lima VC, Fontes W, Freitas-Junior R, et al. The neutrophil-tolymphocyte ratio: a narrative review. Ecancermedicalscience. 2016;10:702.
88. Guthrie GJ, Charles KA, Roxburgh CS, Horgan PG, McMillan DC, Clarke SJ. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol 2013;88(1):218-230.
89. Azab B, Zaher M, Weiserbs KF, Torbey E, Lacossiere K, Gaddam S, et al. Usefulness of neutrophil to lymphocyte ratio in predicting short- and long-term mortality after non-ST-elevation myocardial infarction. Am J Cardiol. 2010;106(4):470-476.
90. Ha YJ, Hur J, Go DJ, kang EH, Park JK, Lee EY, et al. Baseline peripheral blood neutrophil-to-lymphocyte ratio could predict survival in patients with adult polymyositis and dermatomyositis: A retrospective observational study. PLoS One. 2018;13(1):e0190411.
91. Lian J, Jin C, Hao S, Zhang X, Yang M, Jin X, et al. High neutrophil-to-lymphocyte ratio associated with progression to critical illness in older patients with COVID-19: a multicenter retrospective study. Aging (Albany NY). 2020;12(14):13849-13859.
92. Fu J, Kong J, Wang W, Wu M, Yao L, Wang Z, et al. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: A retrospective study in Suzhou China. Thromb Res 2020;192:3-8.
93. Liao D, Zhou F, Luo L, Xu M, Wang H, Xia J, et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. Lancet Haematol. 2020; 7(9): e671-e678. 1
94. Nalbant A, Kaya T, Varim C, Yaylaci S, Tamer A, Cinemre H. Can the neutrophil/lymphocyte ratio (NLR) have a role in the diagnosis of coronavirus 2019 disease (COVID-19)? Rev Assoc Med Bras. (1992). 2020;66(6):746-751.
95. Pirsalehi A, Salari S, Baghestani A, Vahidi M, Khave LJ, AKbari ME, et al. Neutrophil-to-lymphocyte ratio (NLR) greater than 6.5 may reflect the progression of COVID-19 towards an unfavorable clinical outcome. Iran J Microbiol. 2020;12(5):466-474.
96. Vafadar Moradi E, Teimouri A, Rezaee R, Morovatdar N, Foroughian M, Layegh et al. Increased age, neutrophil-to-lymphocyte ratio (NLR) and white blood cells count are associated with higher COVID-19 mortality. Am J Emerg Med. 2020;40:11-14.
97. Zhan L, Liu Y, Cheng Y, Guo W, Yang J. Predictive value of neutrophil/lymphocyte ratio (NLR) on cardiovascular events in patients with COVID-19. Int J Gen Med. 2021;14:3899-3907.
98. Paul O, Tao JQ, Litzky L, Feldman M, Montone K, Rajapakse C, et al. Vascular inflammation in lungs of patients with fatal coronavirus disease 2019 (COVID-19) infection: Possible role for the NLRP3 inflammasome. medRxiv. 2021;rs3.rs-842167.
99. Kerboua KE. NLR: A cost-effective nomogram to guide therapeutic interventions in COVID-19. Immunol Invest 2021;50(1):92-100.
100.Abensur Vuillaume L, Le Borgne P, Alame K, Lefebvre F, Bérard L, Delmas N, et al. Neutrophil-to-lymphocyte ratio and early variation of NLR to predict In-hospital mortality and severity in ED patients with SARS-CoV-2 infection. J Clin Med. 2021;10(12):2563.
101. Liu L, Zheng Y, Cai L, Wu W, Tang S, Ding Y, et al. Neutrophil-to-lymphocyte ratio, a critical predictor for assessment of disease severity in patients with COVID-19. Int J Lab Hematol. 2021;43(2):329-335. 102.Zhang JJ, Cao YY, Tan G, Dong X, Wang BC, Lin J, et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy. 2021;76(2):533- 550.
103.Yilmaz E, Ak R, Doganay F. Usefulness of the neutrophil-to-lymphocyte ratio in predicting the severity of COVID-19 patients: a retrospective cohort study. Sao Paulo Med J. 2022;140:81-86.
104.Oguz EG, Yeter HH, Akcay OF, Besli S, Selem T, Derici U, et al. Predictive value of neutrophil-to-lymphocyte ratio in terms of need for intensive care unit and mortality in maintenance hemodialysis patients with COVID-19. Hemodial Int. 2022;.
105.Xu B, Fan CY, Wang AL, Zou YL, Yu YH, He C, et al. Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China. J Infect. 2020;81(1):e51-e60.
106.Zhao D, Yao F, Wang L, Zheng L, Gao Y, Ye J, et al. A comparative study on the clinical features of coronavirus 2019 (COVID-19) pneumonia with other pneumonias. Clin Infect Dis. 2020;71(15):756-761. 107.Tosato F, Giraudo C, Pelloso M, Musso G, Piva E, Plebani M. One disease, different features: COVID-19 laboratory and radiological findings in three Italian patients. Clin Chem Lab Med. 2020; 58(7):1149-1151.
108.Qu R, Ling Y, Zhang YH, Wei L, Chen X, Li XM, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol. 2020;92(9):1533-1541.

Cómo citar

[1]
Campuzano Maya, G. 2022. El hemograma como predictor en la infección por SARS-CoV-2. Medicina. 44, 1 (abr. 2022), 114–131. DOI:https://doi.org/10.56050/01205498.1666.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2022-04-28

Número

Sección

Artículos de Revisión
Crossref Cited-by logo