Secuenciación de nueva generación (NGS) y oncología de precisión

Autores/as

  • Gonzalo Recondo Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina

DOI:

https://doi.org/10.56050/01205498.1572

Palabras clave:

NGS, Oncología, medicina de precisión

Resumen

La secuenciación de nueva generación es una nueva herramienta de secuenciación masiva de ADN y ARN que ha cambiado radicalmente el diagnóstico molecular del cáncer. Esta tecnología implementada de manera correcta permite seleccionar nuevos tratamientos dirigidos contra el cáncer con base en la detección de biomarcadores moleculares predictivos. En este artículo revisaremos las aplicaciones de la secuenciación de nueva generación para el diagnóstico molecular del cáncer, el monitoreo de respuesta o resistencia, así como los nuevos fármacos que se encuentran disponibles o en desarrollo para alteraciones moleculares específicas, en pro de la promoción de la oncología de precisión.

Biografía del autor/a

Gonzalo Recondo, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina

MD PhD. Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina.

Referencias bibliográficas

1. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K et al. The Cancer Genome Atlas PanCancer analysis project. Nat Genet. 2013;45(10):1113– 20.
2. Li X, Warner JL. A Review of Precision Oncology Knowledgebases for Determining the Clinical Actionability of Genetic Variants. Front cell Dev Biol. 2020;8:48.
3. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.
4. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23(6):703–13.
5. Shames DS, Wistuba II. The evolving genomic classification of lung cancer. J Pathol. 2014;232(2):121–33.
6. Inamura K. Update on Immunohistochemistry for the Diagnosis of Lung Cancer. Cancers (Basel). 2018;10(3):72.
7. Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, Eshleman JR, et al. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn. 2010;12(4):425–32.
8. Normanno N, Denis MG, Thress KS, Ratcliffe M, Reck M. Guide to detecting epidermal growth factor receptor (EGFR) mutations in ctDNA of patients with advanced non-small-cell lung cancer. Oncotarget. 2017;8(7):12501– 16.
9. Kalemkerian GP, Narula N, Kennedy EB, Biermann WA, Donington J, Leighl NB, et al. Molecular Testing Guideline for the Selection of Patients With Lung Cancer for Treatment With Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the . J Clin Oncol. 2018;36(9):911–9.
10. Guo R, Berry LD, Aisner DL, Sheren J, Boyle T, Bunn PAJ, et al. MET IHC Is a Poor Screen for MET Amplification or MET Exon 14 Mutations in Lung Adenocarcinomas: Data from a Tri-Institutional Cohort of the Lung Cancer Mutation Consortium. J Thorac Oncol. 2019;14(9):1666–71.
11. Descarpentries C, Lepretre F, Escande F, Kherrouche Z, Figeac M, Sebda S et al. Optimization of Routine Testing for MET Exon 14 Splice Site Mutations in NSCLC Patients. J Thorac Oncol. 2018;13(12):1873–83.
12. Pennell NA, Mutebi A, Zhou Z-Y, Ricculli ML, Tang W, Wang H, et al. Economic Impact of Next-Generation Sequencing Versus Single-Gene Testing to Detect Genomic Alterations in Metastatic Non–Small-Cell Lung Cancer Using a Decision Analytic Model. JCO Precis Oncol. 201916;(3):1–9.
13. Massard C, Michiels S, Ferte C, Le Deley M-C, Lacroix L, Hollebecque A, et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial. Cancer Discov. 2017;7(6):586–95.
14. Rodon J, Soria J-C, Berger R, Miller WH, Rubin E, Kugel A, et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial. Nat Med. 2019;25(5):751–8.
15. Sicklick JK, Kato S, Okamura R, Schwaederle M, Hahn ME, Williams CB, et al. Molecular profiling of cancer patients enables personalized combination therapy: the IPREDICT study. Nat Med. 2019;25(5):744–50.
16. Jordan EJ, Kim HR, Arcila ME, Barron D, Chakravarty D, Gao J, et al. Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved and Emerging Therapies. Cancer Discov. 2017;7(6):596–609.
17. Sholl LM, Aisner DL, Varella-Garcia M, Berry LD, DiasSantagata D, Wistuba II et al. Multi-institutional Oncogenic Driver Mutation Analysis in Lung Adenocarcinoma. J Thorac Oncol. 2015;10(5):768–777.
18. Barlesi F, Mazieres J, Merlio J-P, Debieuvre D, Mosser J, Lena H et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet . 2016;387(10026):1415-1426.
19. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25–41.
20. Lamarca A, Kapacee Z, Breeze M, Bell C, Belcher D, Staiger H et al. Molecular Profiling in Daily Clinical Practice: Practicalities in Advanced Cholangiocarcinoma and Other Biliary Tract Cancers. J Clin Med. 2020;9(9):2854.
21. Konstantinopoulos PA, Norquist B, Lacchetti C, Armstrong D, Grisham RN, Goodfellow PJ et al. Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline. J Clin Oncol. 2020;38(11):1222–45.
22. Yoo S-K, Song YS, Lee EK, Hwang J, Kim HH, Jung G, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun. 2019;10(1):2764.
23. Talhouk A, McConechy MK, Leung S, Li-Chang HH, Kwon JS, Melnyk N et al. A clinically applicable molecularbased classification for endometrial cancers. Br J Cancer. 2015;113(2):299–310.
24. Chang Y, Tolani B, Nie X, Zhi X, Hu M, He B. Review of the clinical applications and technological advances of circulating tumor DNA in cancer monitoring. Ther Clin Risk Manag. 2017;13:1363–74.
25. Jiang J, Adams H-P, Lange M, Siemann S, Feldkamp M, McNamara S et al. Plasma-based longitudinal mutation monitoring as a potential predictor of disease progression in subjects with adenocarcinoma in advanced non-small cell lung cancer. BMC Cancer. 2020;20(1):885.
26. Tarazona N, Gimeno-Valiente F, Gambardella V, Zuñiga S, Rentero-Garrido P, Huerta M et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol. 2019;30(11):1804–12.
27. Kang J-K, Heo S, Kim H-P, Song S-H, Yun H, Han S-W et al. Liquid biopsy-based tumor profiling for metastatic colorectal cancer patients with ultra-deep targeted sequencing. PLoS One . 2020;15(5):e0232754.
28. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17(11):637–58.
29. Recondo G, Mahjoubi L, Maillard A, Loriot Y, Bigot L, Facchinetti F et al. Feasibility and first reports of the MATCHR repeated biopsy trial at Gustave Roussy. NPJ Precis Oncol. 2020;4:27.
30. Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP et al. Recommendations for the use of nextgeneration sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol Off J Eur Soc Med Oncol. 2020;(11):1491-505.
31. Mateo J, Chakravarty D, Dienstmann R, Jezdic S, Gonzalez-Perez A, Lopez-Bigas N, et al. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol. 2018;29(9):1895–902
32. Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59(2 Suppl):21–6.
33. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.
34. Recondo G, Facchinetti F, Olaussen KA, Besse B, Friboulet L. Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or next-generation TKI? Nat Rev Clin Oncol. 2018;15(11):694-708.
35. Shi Y, Zhang L, Liu X, Zhou C, Zhang L, Zhang S et al. Icotinib versus gefitinib in previously treated advanced non-small-cell lung cancer (ICOGEN): a randomised, double-blind phase 3 non-inferiority trial. Lancet Oncol. 2013;14(10):953–61.
36. Yang JJ, Zhou Q, Yan HH, Zhang XC, Chen HJ, Tu HY et al. A phase III randomised controlled trial of erlotinib vs gefitinib in advanced non-small cell lung cancer with EGFR mutations. Br J Cancer. 2017;116(5):568–74.
37. Paz-Ares L, Tan E-H, O’Byrne K, Zhang L, Hirsh V, Boyer M et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Ann Oncol. 2017;28(2):270–7.
38. Mok TS, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S et al. Improvement in Overall Survival in a Randomized Study That Compared Dacomitinib With Gefitinib in Patients With Advanced Non-Small-Cell Lung Cancer and EGFR-Activating Mutations. J Clin Oncol. 2018;36(22):2244-2250.
39. Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim HR, Ramalingam SS et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med. 2017 ;376(7):629–40.
40. Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N Engl J Med. 2020;382(1):41–50.
41. Robichaux JP, Elamin YY, Tan Z, Carter BW, Zhang S, Liu S et al. Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med. 2018;24(5):638–46.
42. Remon J, Hendriks LEL, Cardona AF, Besse B. EGFR exon 20 insertions in advanced non-small cell lung cancer: A new history begins. Cancer Treat Rev. 2020;90:102105.
43. Wu Y-L, Tsuboi M, He J, John T, Grohe C, Majem M et al. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N Engl J Med. 2020;383(18):1711–23.
44. Offin M, Chan JM, Tenet M, Rizvi HA, Shen R, Riely GJ et al. Concurrent RB1 and TP53 Alterations Define a Subset of EGFR-Mutant Lung Cancers at risk for Histologic Transformation and Inferior Clinical Outcomes. J Thorac Oncol. 2019;14(10):1784–93.
45. Offin M, Rizvi H, Tenet M, Ni A, Sanchez-Vega F, Li BT et al. Tumor Mutation Burden and Efficacy of EGFR-Tyrosine Kinase Inhibitors in Patients with EGFR-Mutant Lung Cancers. Clin cancer Res. 2019;25(3):1063–9.
46. Provencio-Pulla M, Serna R, Franco F, Sanchez A, García Girón C, Domine M et al. ctDNA levels before treatment predict survival in non-small cell lung cancer patients treated with a tyrosine kinase inhibitor. J Clin Oncol. 2020 20;38(15_suppl):9542.
47. Sequist L V, Han J-Y, Ahn M-J, Cho BC, Yu H, Kim S-W et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 2020;21(3):373–86.
48. Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 2019;121(9):725–37.
49. Hallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer. 2013;13(10):685–700.
50. Solomon BJ, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, Felip E et al. Final Overall Survival Analysis From a Study Comparing First-Line Crizotinib Versus Chemotherapy in ALK-Mutation-Positive Non-Small-Cell Lung Cancer. J Clin Oncol. 2018;36(22):2251-2258.
51. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, et al. Mechanisms of Acquired Crizotinib Resistance in ALK- Rearranged Lung Cancers. Sci Transl Med Febr. 2012;8(4120):120–17.
52. Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 2018;19(12):1654-1667.
53. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim D-W, et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2017;377(9):829–38.
54. Camidge DR, Kim HR, Ahn M-J, Yang JC-H, Han J-Y, Lee J-S et al. Brigatinib versus Crizotinib in ALKPositive Non-Small-Cell Lung Cancer. N Engl J Med. 2018;379(21):2027-2039.
55. Shaw AT, Bauer TM, de Marinis F, Felip E, Goto Y, Liu G, et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N Engl J Med. 2020;383(21):2018–29.
56. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, et al. Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer. Cancer Discov. 2016;6(10):1118–33.
57. Shaw AT, Solomon BJ, Besse B, Bauer TM, Lin C-C, Soo RA et al. ALK Resistance Mutations and Efficacy of Lorlatinib in Advanced Anaplastic Lymphoma KinasePositive Non-Small-Cell Lung Cancer. J Clin Oncol. 2019;37(16):1370–9.
58. Yoda S, Lin JJ, Lawrence MS, Burke BJ, Friboulet L, Langenbucher A et al. Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound ALK Mutations in ALKPositive Lung Cancer. Cancer Discov. 2018;8(6):714-729.
59. Recondo G, Mezquita L, Facchinetti F, Planchard D, Gazzah A, Bigot L, et al. Diverse Resistance Mechanisms to the Third-Generation ALK Inhibitor Lorlatinib in ALK-Rearranged Lung Cancer. Clin cancer Res. 2020;26(1):242–55.
60. Davies KD, Doebele RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin cancer Res. 2013;19(15): 4040–5.
61. Shaw AT, Ou S-HI, Bang Y-J, Camidge DR, Solomon BJ, Salgia R et al. Crizotinib in ROS1 -Rearranged Non–SmallCell Lung Cancer. N Engl J Med. 2014;371(21):1963–71.
62. Drilon A, Siena S, Dziadziuszko R, Barlesi F, Krebs MG, Shaw AT et al. Entrectinib in ROS1 fusion-positive nonsmall-cell lung cancer: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):261–70.
63. Drilon A, Ou S-HI, Cho BC, Kim D-W, Lee J, Lin JJ et al. Repotrectinib (TPX-0005) Is a Next-Generation ROS1/TRK/ALK Inhibitor That Potently Inhibits ROS1/ TRK/ALK Solvent- Front Mutations. Cancer Discov. 2018;8(10):1227–36.
64. Yaeger R, Corcoran RB. Targeting Alterations in the RAFMEK Pathway. Cancer Discov. 2019;9(3):329–41.
65. Planchard D, Besse B, Groen HJM, Souquet P-J, Quoix E, Baik CS et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 2016;17(7):984–93.
66. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J Clin Oncol. 2018;36(1):7–13.
67. Subbiah V, Lassen U, Élez E, Italiano A, Curigliano G, Javle M, et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 2020;21(9):1234–43.
68. Ortiz-Cuaran S, Mezquita L, Swalduz A, Aldea M, Mazieres J, Leonce C et al. Circulating Tumor DNA Genomics Reveal Potential Mechanisms of Resistance to BRAFTargeted Therapies in Patients with BRAF-Mutant Metastatic Non-Small Cell Lung Cancer. Clin cancer Res. 2020;26(23):6242-6253.
69. Subbiah V, Cote GJ. Advances in Targeting RET-Dependent Cancers. Cancer Discov. 2020;10(4):498–505.
70. Drilon A, Oxnard GR, Tan DSW, Loong HHF, Johnson M, Gainor J et al. Efficacy of Selpercatinib in RET FusionPositive Non-Small-Cell Lung Cancer. N Engl J Med. 2020;383(9):813–24.
71. Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL, Maynard M et al. Precision Targeted Therapy with BLU-667 for RET-Driven Cancers. Cancer Discov. 2018;8(7):836–49.
72. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15(12):731–47.
73. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med. 2018;378(8):731–9.
74. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):271–82.
75. Fuse MJ, Okada K, Oh-Hara T, Ogura H, Fujita N, Katayama R. Mechanisms of Resistance to NTRK Inhibitors and Therapeutic Strategies in NTRK1-Rearranged Cancers. Mol Cancer Ther. 2017;16(10):2130–43.
76. Drilon A, Nagasubramanian R, Blake JF, Ku N, Tuch BB, Ebata K et al. A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid Tumors. Cancer Discov. 2017;7(9):963–72.
77. Loriot Y, Necchi A, Park SH, Garcia-Donas J, Huddart R, Burgess E et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N Engl J Med. 2019;381(4):338–48.
78. de Almeida Carvalho LM, de Oliveira Sapori Avelar S, Haslam A, Gill J, Prasad V. Estimation of Percentage of Patients With Fibroblast Growth Factor Receptor Alterations Eligible for Off-label Use of Erdafitinib. JAMA Netw Open. 2019;2(11):e1916091.
79. Abou-Alfa GK, Sahai V, Hollebecque A, Vaccaro G, Melisi D, Al-Rajabi R et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21(5):671–84.
80. Silverman IM, Hollebecque A, Friboulet L, Owens S, Newton RC, Zhen H, et al. Clinicogenomic analysis of FGFR2- rearranged cholangiocarcinoma identifies correlates of response and mechanisms of resistance to pemigatinib. Cancer Discov. 2020;:CD-20-0766.
81. Facchinetti F, Hollebecque A, Bahleda R, Loriot Y, Olaussen KA, Massard C, et al. Facts and New Hopes on Selective FGFR Inhibitors in Solid Tumors. Clin cancer Res. 2020;26(4):764–74.
82. Recondo G, Che J, Jänne PA, Awad MM. Targeting MET Dysregulation in Cancer. Cancer Discov. 2020;10(7):922–34.
83. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9.
84. Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P et al. MET Exon 14 Mutations in NonSmall-Cell Lung Cancer Are Associated With Advanced Age and Stage-Dependent MET Genomic Amplification and c-Met Overexpression. J Clin Oncol. 2016;34(7):721– 30.
85. Fujino T, Kobayashi Y, Suda K, Koga T, Nishino M, Ohara S et al. Sensitivity and Resistance of MET Exon 14 Mutations in Lung Cancer to Eight MET Tyrosine Kinase Inhibitors In Vitro. J Thorac Oncol. 2019;14(10):1753-1765.
86. Arcila ME, Chaft JE, Nafa K, Roy-Chowdhuri S, Lau C, Zaidinski M et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res. 2012;18(18):4910–8.
87. Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS et al. Ado-Trastuzumab Emtansine for Patients With HER2-Mutant Lung Cancers: Results From a Phase II Basket Trial. J Clin Oncol. 2018;36(24):2532–7.
88. Tsurutani J, Iwata H, Krop I, Jänne PA, Doi T, Takahashi S et al. Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. Cancer Discov. 2020;10(5):688–701.
89. Smit EF, Nakagawa K, Nagasaka M, Felip E, Goto Y, Li BT et al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-mutated metastatic non-small cell lung cancer (NSCLC): Interim results of DESTINY-Lung01. J Clin Oncol . 2020;38(15_suppl):9504.
90. Moore AR, Rosenberg SC, McCormick F, Malek S. RAStargeted therapies: is the undruggable drugged? Nat Rev Drug Discov. 2020;19(8):533–52.
91. Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI et al. KRAS(G12C) Inhibition with Sotorasib in Advanced Solid Tumors. N Engl J Med. 2020;383(13):1207– 17.
92. Hallin J, Engstrom LD, Hargis L, Calinisan A, Aranda R, Briere DM et al. The KRAS(G12C) Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discov. 2020;10(1):54–71.
93. Rizvi N a., Hellmann MD, Snyder a., Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124-128.
94. Herbst RS, Lopes G, Kowalski DM, Nishio M, Wu Y-L, de Castro Junior G et al. LBA79 - Association between tissue TMB (tTMB) and clinical outcomes with pembrolizumab monotherapy (pembro) in PD-L1-positive advanced NSCLC in the KEYNOTE-010 and -042 trials. Ann Oncol. 2019;30:916–7.
95. Peters S, Cho BC, Reinmuth N, Lee KH, Luft A, Ahn M-J et al. Abstract CT074: Tumor mutational burden (TMB) as a biomarker of survival in metastatic non-small cell lung cancer (mNSCLC): Blood and tissue TMB analysis from MYSTIC, a Phase III study of first-line durvalumab ± tremelimumab vs chemotherapy. Clinical Trials2019;.
96. Sholl LM, Hirsch FR, Hwang D, Botling J, Lopez-Rios F, Bubendorf L et al. The Promises and Challenges of Tumor Mutation Burden as an Immunotherapy Biomarker: A Perspective from the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol. 2020;15(9):1409–24.
97. Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21(10):1353–65.
98. Vokes NI, Liu D, Ricciuti B, Jimenez-Aguilar E, Rizvi H, Dietlein F et al. Harmonization of Tumor Mutational Burden Quantification and Association With Response to Immune Checkpoint Blockade in Non–Small-Cell Lung Cancer. JCO Precis Oncol . 2019 12;(3):1–12.
99. Lamberti G, Spurr LF, Li Y, Ricciuti B, Recondo G, Umeton R et al. Clinicopathological and genomic correlates of programmed cell death ligand 1 (PD-L1) expression in nonsquamous non-small-cell lung cancer. Ann Oncoll. 2020;S0923-7534(20):36078-6.
100. Calderón-Aparicio A, Orue A. Precision oncology in Latin America: current situation, challenges and perspectives. Ecancermedicalscience. 2019:13.
101. Kurnit KC, Dumbrava EEI, Litzenburger B, Khotskaya YB, Johnson AM, Yap TA, et al. Precision Oncology Decision Support: Current Approaches and Strategies for the Future. Clin Cancer Res . 2018;24(12):2719–2731.

Cómo citar

[1]
Recondo, G. 2021. Secuenciación de nueva generación (NGS) y oncología de precisión. Medicina. 42, 4 (feb. 2021), 736–753. DOI:https://doi.org/10.56050/01205498.1572.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2021-02-12

Número

Sección

Artículos Especiales
Crossref Cited-by logo