Cáncer y mitocondria: un aspecto central para el desarrollo y crecimiento tumoral

Autores/as

  • Sofía Isabel Freyre-Bernal Universidad del Cauca, Popayán
  • Jhan Sebastián Saavedra-Torres Universidad del Cauca, Popayán
  • Luisa Fernanda Zúñiga-Cerón Universidad del Cauca, Popayán
  • Andrés Felipe Olaya-Castañeda Universidad del Cauca, Popayán
  • Carolina Salguero Universidad de Harvard, Cambridge

Palabras clave:

mitocondria, adenosín trifosfato, biogénesis de organelos, apoptosis, cáncer, medicina nuclear, mitochondria, adenosine triphosphate, organelle biogenesis, cancer, nuclear medicine

Resumen

Se sabe que las células tumorales consumen más glucosa que las no tumorales. Además, las células tumorales expresan isoformas embrionarias de enzimas para la glucólisis, permitiendo su mayor actividad y obtención de energía en los diversos procesos cancerígenos. Algunos autores han sugerido que la hipoxia del tumor actúa como regulador del metabolismo energético y que puede redirigir a las células tumorales a utilizar la glucólisis como fuente de provisión de ATP cuando hay limitación de oxígeno. Otros autores sugieren que ese es el resultado de mutaciones en oncogenes, genes supresores y enzimas de la vía glucolítica o del metabolismo oxidativo mitocondrial (Myc, Akt, p53, HIF1-α). La aplicación de la tomografía de emisión de positrones (PET) en los servicios de medicina nuclear y radiología ha permitido usar la mitocondria como un organelo para el diagnóstico de cáncer cuantificando una mayor captación de glucosa por las células tumorales respecto del tejido no tumoral adyacente, mediante el uso del análogo radioactivo no metabolizable de la glucosa (18FDG, 18F-2-desoxiglucosa). Así pues, las investigaciones se han centrado en el metabolismo alterado como parte del desarrollo y crecimiento tumoral con el objetivo de inhibir la progresión a la metástasis de esta patología en los pacientes que no se pueden recuperar recibiendo tratamiento con quimioterapia y la radioterapia. El objetivo de esta revisión documental consiste en resaltar las generalidades e importancia de las mitocondrias en los mecanismos que promueven el cáncer.

 

Cancer and mitochondria: a central aspect to tumor development and growth


Abstract

Tumor cells consume more glucose than the non-tumor cells. In addition, tumor cells express isoforms of embryonic glycolytic enzymes with higher activity to obtain energy in the various carcinogenic processes. Some authors have suggested that hypoxia of the tumor acts as a regulator of energy metabolism and can redirect to tumor cells to use the glycolysis as source for the supply of ATP when there is limitation of oxygen. In contrast, other authors suggest that this phenomena is the result of mutations in oncogenes, tumor suppressor genes and enzymes of the glycolytic pathway or oxidative metabolism mitochondrial including Myc, Akt, p53, HIF1-α. The application of Positron Emission Tomography (PET) in nuclear medicine services and radiology has allowed the use of mitochondria as an organelle that serves to diagnose cancer, quantify greater uptake of glucose by tumor cells on adjacent non-tumor tissue using analogue radioactive non-metabolizable glucose (18FDG, 18F-2-desoxiglucosa). Such research has focused on altered metabolism as part of development and tumor growth to inhibit the progression of cancer to metastases in patients that cannot be recovered by chemotherapy and radiation therapy. The aim of this review is to highlight the generalities and importance of mitochondria in the mechanisms that promote cancer.

Biografía del autor/a

Sofía Isabel Freyre-Bernal, Universidad del Cauca, Popayán

Bioquim. MSc. Docente. Departamento de Ciencias Fisiológicas, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia.

Jhan Sebastián Saavedra-Torres, Universidad del Cauca, Popayán

Estudiantes del programa de Medicina, Facultad de Ciencias de la Salud, Universidad del Cauca, Grupo de Investigación en Salud (GIS), Popayán, Colombia.

Luisa Fernanda Zúñiga-Cerón, Universidad del Cauca, Popayán

Estudiantes del programa de Medicina, Facultad de Ciencias de la Salud, Universidad del Cauca, Grupo de Investigación en Salud (GIS), Popayán, Colombia.

Andrés Felipe Olaya-Castañeda, Universidad del Cauca, Popayán

Estudiante del programa de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán, Colombia.

Carolina Salguero, Universidad de Harvard, Cambridge

Bioquim, PhD. Departamento de Biología Celular y Molecular, Universidad de Harvard, Cambridge, Massachusetts, USA.

Referencias bibliográficas

Nunnari J, Suomalainen A. Mitochondria: In sickness and in Health. Cell. 2012 Mar 16; 148 (6): 1145- 59. doi: http://dx.doi.org/10.1016/j.cell.2012.02.035.

Cooper GM. The Cell: A Molecular Approach. 2° ed. Sunderland (MA): Sinauer Associates; 2000. Disponible en: https://www.ncbi.nlm.nih.gov/books/ NBK9839/

Cooper GM, Hausmann RE. La célula. 5° ed. Madrid: Marban; 2010.

Gamero de Luna EJ, Gamero- Estévez E. Enfermedades mitocondriales. Med fam Andal. 2012 Dic; 13 (3): 244- 57.

Valle A, Soto I. Metabolismo energético y cáncer. Vertientes Rev Esp en Ciencias de la Salud. 2014; 17 (2): 108- 13.

Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer lett. 2015. Ene 28; 356 (2 Pt A): 156- 64. doi: 10.1016/j.can- let.2014.04.001.

Galluzzi L, Kepp O, Heiden MGV, Kromer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013 Nov; 12 (1): 829- 46. doi:10.1038/nrd4145

Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011 May; 11 (1): 325- 37.

Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004 Nov; 4 (1): 891- 9. doi: doi:10.1038/nrc1478

Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999 Mar 05; 283 (1): 1482- 93. doi: 10.1126/science.283.5407.1482

Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Matthew P. et al. Biología Celular y Molecular. 5° ed. Buenos Aires: Editorial Médica Panamericana; 2006. 1-973 pp.

Sánchez V. Mecanismos reguladores de la muerte celular no necrótica. Rev Cubana Invest Bioméd. 2001; 20 (4): 266- 74.

Laverde V. Monografía Genética: Las Mitocondrias: ¿Bacterias entre nuestras células? [Tesis]. Bogotá (Colombia): Pontificia Universidad Javeriana; 2005.

López RJ. Función y biogénesis mitocondrial: Diferencias entre géneros. [Tesis de doctorado]. Palma (España): Universitat de les Illes Balears; 2005.

Hannafon BN, Ding WQ. Intercellular Comunication by Exosome-Derived microRNAs in Cancer. In J Mol Sci. 2013; 14 (7): 14240- 69. doi: 10.3390/ ijms140714240

Kierszembaum AL, Tres LL. Histología y Biología Celular. 1° ed. España: Elsevier; 2012.

Scitable by Nature Education. Biología Celular de Seminarios: Las mitocondrias. Nature. 2014. p. Unidad 3.4.

Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000 Sep; 10 (9): 369- 77.

Skulachev VP. Why are mitochondria involved in apoptosis?: Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide- producing mitichondria and cell. FEBS Lett. 1996 Nov 11; 397 (1): 7- 10. doi: https://doi.org/10.1016/0014- 5793(96)00989-1

Tornero D, Ceña V, Jordán J. La mitocondria como diana farmacológica en los procesos neurodegenerativos. OFFARM. 2002 Dic; 21 (11): 98- 102.

Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Inmunol Today. 1997 Ene; 18 (1): 44- 51. Pubmed PMID: 9018974

Kumar V, Abbas A, Fausto N, Aster JC. Patologia Estructural y Funcional Robbins y Cotran. 8° ed. Barcelona, España: Elsevier Saunders; 2010. 120- 669 pp.

Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R. TIGAR, a p53-inducible regulator of glycolisis and apoptosis. Cell. 2006 Jul 14; 126 (1): 107- 20. doi: 10.1016/j.cell.2006.05.036 PMID:

Akqul C, Moulding DA, Edwards SW. Alternative splicing of Bcl-2-related genes: functional consequences and potential therapeutic applications. Cell Mol life Sci. 2004 Sep; 61 (17): 2189- 99. doi: 10.1007/ s00018-004-4001-7 Pubmed PMID: 15338051

Wei MC. Bc1-2-related genes in lymphoid neoplasia. Int J Hematol. 2004; 80 (1): 205- 9.

Iacobuzio-Donahue CA, Herman JM. Autophagy, p53, and Pancreatic Cancer. N Engl J Med. 2014 Abr 3; 370 (14): 1352- 3. doi:10.1056/NEJMcibr1400189

Doucas H, Berry DP. Basic principles of the molecular biology of cancer I. Surg. 2006 Feb; 24 (2): 43- 7.

Xue B, Wen C, Shi Y, Zhao D, Li C. Human NRAGE disrupts E-cadherin/beta-catenin regulated homotypic cell-cell adhesion. Biochem Biophys Res Commun. 2005 Oct 14: 336 (1): 247- 51.

Bertram JS. The molecular biology of cancer. Mol Aspects Med. 2000 Dec; 21 (6): 167- 223.

Sánchez V. Papel de la angiogénesis en el crecimiento tumoral. Rev Cuba Invest Biomed. 2001; 20 (3): 223- 30.

Vergara J. Cell fate: death or immortalization (Part II). Medwave. 2004; (7): (e3491).

Bhatt AN, Mathur R, Farooque A, Verma A, Dwarakanath BS. Cancer biomarkers-current perspectives. Indian J Med Res. 2010; 132:129- 49.

Sánchez R, Aboleda G. Mitocondria y muerte celular. Nov - Publicación Científica en Ciencias Biomédicas. 2008; 6 (10): 190- 200.

Meza-Junco J, Montaño A, Aguayo Á. Bases mo- leculares del cáncer. Rev. Invest. Clin. 2006 Feb; 58 (1): 56- 70.

Paloma E. Expresión génica diferencial de la vía WNT y de moléculas de adhesión y matriz extracelular en cáncer colorrectal esporádico con y sin inestabilidad en microsatélites. [Tesis de doctorado]. Madrid (España): Universidad Complutense de Madrid; 2010.

García J, Juaristi, Aguirre J. Oncología: oncogenes y genes supresores del cáncer. Primera. 1° Ed. España: UNNE ARAN; 2007.

Verma M, Kumar D. Application of mitochondrial genome information in cancer epidemiology. Clin Chim Acta. 2007 Aug; 383 (1- 2): 41- 50.

Wild CP, Law GR, Roman E. Molecular epidemiology and cancer: promising areas for future research in the post-genomic era. Mutat Res. 2002 Ene 29;

(1): 3- 12.

Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000 Ene 7; 100(1): 57- 70.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144 (5): 646- 74. doi: 10.1016/j.cell.2011.02.013

Cascales M, Álvarez JA. Metaloproteinasas, matriz extracelular y cáncer. An R Acad Nac Farm. 2010; 76 (1): 59- 84.

González G, González A, Delgado J, Gutiérrez LH. Participación de las metaloproteasas de matriz en la progresión del cáncer. Rev Inst Nal Enf Resp Mex. 2009; 22 (4): 328- 36.

Saavedra JS, Zúñiga LF, Vásquez-López JA, Navia CA, Mosquera LP, Freyre SI. La matriz extracelular: un ecosistema influyente en la forma y comportamiento de las células. Morfolia. 2015; 7 (1): 12- 35.

Vivas D, Inga R. Yarlequé A. Uso potencial de componentes del veneno de serpiente en el tratamiento del cáncer. Rev Peru Med Exp Salud Pública. 2012; 29 (3): 396- 401.

Huang T, Civelek AC, Li J, Jiang H, Ng CK, Poste GC, et al. Complex microenvironment of HTB177 subcutaneous xenograft. J Nucl Med. 2012 Ago; 53 (1): 1262- 8.

Zuñiga LF, Freyre SI, Navia CA, Saavedra JS. Adhesión celular: el ensamblaje de la vía al cáncer. Morfolia. 2014; 6 (2): 3- 19.

Saavedra JS, Zúñiga LF, Vásquez-López JA, Navia CA, Mosquera LP, Freyre SI. La matriz extracelular: un ecosistema influyente en la forma y comportamiento de las células. Morfolia. 2015; 7 (1): 12- 35.

Thompson CB. Metabolic enzymes as oncogenes or tumor suppressors. N Engl J Med. 2009; 360 (8): 813- 5.

Lisanti MP. Martínez UE, Sotgia F. Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and “fibroblast addiction” are new therapeutic targets for drug discovery. Cell Cycle. 2013 Sep; 12 (17): 2723- 2732.

Harrington KJ. Biology of cancer. Medicine (Baltimore). 2008 Ene; 36 (1): 1- 4.

Johnston SR, Gore ME. Cancer Biology: Clinical Applications. Surg. 2003 Jun; 21 (6): 160- 160.

Zhang S, Yu D. Targeting Src family kinases in anti- cancer therapies: turning promise into triumph. Trends Pharmacol Sci. 2012 Mar; 33 (3): 122- 8.

Fleming S. The molecular biology of cancer: the basics. Surg. 2003 Nov; 21 (11): III- VI.

Ward PS, Thompson CB. Metabolic Reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012; 21 (1): 297- 308.

Jäättelä M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene. 23 (1): 2746- 56.

Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2015; 12 (10): 685- 98.

Cuezva JM, Krajewska M, de Heredia ML, Krajewska S, Santamaría G, Kim H, et al. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res. 62 (22): 6674- 81.

Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet. 20 (1): 291- 3.

Alam MM, Lal S, Fitzgerald KE, Zhang L. A holistic view of cancer bioenergetics: mitochondrial function and respiration play fundamental roles in the development and progression of diverse tumors. Clin Transl Med. 2016 Mar; 5 (1): 3.

Warburg O. El metabolismo de los tumores. Med. 1931: 15- 17.

Warburg O, Negelein KP. Ueber den Stoffwechsel der Tumoren. Biochem Z. 1924; 152 (1): 319- 44.

Warburg O. On the origin of cancer cells. Science. 1956; 123 (3191): 309- 14.

Vazquez A, Liu J, Zhou Y, Oltvai ZN. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC Syst Biol. 2010; 58 (4).

Wallace DC. Mitochondria and cancer. Nat Rev

Cancer. 2012; 12 (10): 685- 98.

Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 2005; 1 (6): 409- 414.

Bertram JS. The molecular biology of cancer. Mol Aspects Med. 2000: 21 (6):167- 223.

Warburg O. On the origin of cancer cells. Science. 1956; 123 (3191): 309- 14.

Cuezva JM, Ortega AD, Willers I, Sánchez L, Aldea M, Sánchez M. The tumor suppressor function of mitochondria: translation into the clinics. Biochim Biophys Acta. 2009; 1792 (1): 1145- 1158.

Folkman J. Cáncer: Principios y Práctica de Oncología. 7a Ed. Filadelfia: PA: Lippincott Williams & Wilkins; 2005. 2865- 2882 pp.

Martínez JD, Herrera LA. Angiogénesis: VEGF/VE- GFRs como blancos terapéuticos en el tratamiento contra el cáncer. Cancerología. 2006; (1): 83- 96.

Ferrara N. Vascular Endothelial Growth Factor: Basic Science and Clinical Progress. Endocr Rev. 2003; 25 (4): 581- 611.

Duffy AM, Bouchier-Hayes DJ, Harmey JH. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF. Madame Curie Bioscience Database. USA Landes Bioscience. 2013; 21 (1): 779- 786.

Reichardt LF. Tomaselli K. Extracellular matrix mole- cules and their receptors: Functions in neural development. Annu Rev Neurosci. 1991; 14 (1): 531- 570.

Higginbotham JN, Demory M, Gephart JD, Franklin JL, Bogatcheva G, Kremers GJ, et al. Amphiregulinexosomes increase cancer cell invasion. Curr Biol. 2011; 21 (1): 779- 786.

Mandal DA. ¿Cuál es Metástasis? news-medical. net [Internet]. [2014 octubre 8]. Disponible en: http:// www.news-medical.net/health/What-is-Metastasis- (Spanish).aspx

Kuo TH, Kubota T, Watanabe M, Furukawa T, Tera- moto T, Ishibiki K, et al. Liver colonization competence governs colon cancer matastasis. Proc Natl Acad Sci U S A. 1995; 92 (1): 12085- 9.

Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011; 473 (7347): 298- 307.

Cheresh DA, Stupack DG. Regulation of angiogene- sis: apoptotic cues from the ECM. Oncogene. 2008; 27 (48): 6285- 98.

Lutsenko SV, Kiselev SM, Severin SE. Molecular mechanisms of tumor angiogenesis. Biochemistry (Mosc). 2003; 68 (3): 286- 300.

Martinez JD, Parker MT, Fultz KE, Ignatenko N, Gerner EW. Molecular Biology of Cancer Vol. 5. 1° Ed. Oxford: Chemotherapeutic Agents; 2003.

Tiwari N, Gheldof A, Tatari M, Christofori G. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012 Jun;22 (3): 194- 207

Boticario C. Innovaciones en el Cáncer. 1° Ed. Mexico: UNED; 2012. 408- 423 pp.

Zeng W, Liu P, Pan W, Ram Singh S, Wei Y. Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett. 2014; 356 (2): 263- 7.

Marín A. El factor inducido por la hipoxia-(HIF-1) y la glucólisis en las células tumorales. Rev Educ Bioquímica. 2009; 28 (2): 42- 51.

Simonnet H, Alazard N, Pfeiffer K, Gallou C, Béroud C, Demont J. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis. 2002; 23 (1): 759- 68.

Bergström J, Furst P, Noree LO, Vinnars E. Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol. 1974; 36 (6): 693- 7.

Wise DR., Ward PS., Shay JE. Cross JR, Grubber JJ, Sachdeva UM. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha- ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011; 108 (49): 19611- 16.

Zaidi N, Lupien L, Kuemmerle N, Kinlaw WB, Swinnen JV, Smans K. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res. 52 (4): 585- 589.

Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, DeGrado TR. Comparison of [18 F] fluorocholine and [18 F] fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate. cancer. J Urol. 2002; 168 (1): 273- 280.

Liu Y, Zuckier LS, Ghesani NV. Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer Res. 2010; 30 (2): 369- 374.

Zha S, Ferdinandusse S, Hicks JL, Denis S, Dunn TA, Wanders RJ, et al. Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate. 2005; 63 (4): 316- 23.

Comerford SA, Huang Z, Du X, Wang Y, Cai L, Wi- tkiewicz AK, et al. Acetate dependence of tumors. Cell. 2014; 159 (7): 1591- 602.

Martinez UE, Lisanti MP, Sotgia F. Catabolic cancer- associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol. 2014; 25 (1): 47- 60.

López-Ríos F, Sánchez-Aragó M, García-García E, Ortega AD, Berrendero JR, Pozo-Rodríguez F. Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res. 2007; 67 (1): 9013- 7.

Rigo P, Paulus P, Kaschten BJ, Hustinx T, Buri G, Jerusalem T. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglu- cose. Eur J Nucl Med. 23 (1): 1641- 74.

Plathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med. 2008; 49 (Supl. 2): 43S- 63S.

Lin PC, Lin JK, Yang SH, Wang HS, Li AF, Chang SC. Expression of beta-F1-ATPase and mitochondrial transcription factor A and the change in mitochondrial DNA content in colorectal cancer: clinical data analysis and evidence from an in vitro study. Int J Color Dis. 2008; 23 (1): 1223- 1232.

Ortega AD, Sala S, Espinosa E, González M, Cuezva JM. HuR and the bioenergetic signature of breast cancer: a low tumor expression of the RNA-binding protein predicts a higher risk of disease recurrence. Carcinogenesis. 2008; 29 (11): 2053- 61.

Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM, et al. The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis. 2004; 25 (1): 1157- 1163.

Isidoro A, Martínez M, Fernández PL, Ortega AD, Santamaría G, Chamorro M, et al. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J. 2004; 378 (1): 17- 20.

Lin PC, Lin JK, Yang SH, Wang HS, Li AF, Chang SC. Expression of beta-F1-ATPase and mitochondrial transcription factor A and the change in mitochondrial DNA content in colorectal cancer: clinical data analysis and evidence from an in vitro study. Int J Color Dis. 2008: 23 (12): 1223- 32.

Sanchez-Arago M, Cuezva JM. The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil. J Transl Med. 2011; 9 (1): 9- 19.

Santamaria G, Martinez M, Fabregat I, Cuezva JM. Efficient execution of cell death in non-glycolytic cells requires the generation of ROS controlled by the activity of mitochondrial H+ATP synthase. Carcinogenesis. 2005; 27 (5): 925- 935.

Cómo citar

[1]
Freyre-Bernal, S.I. et al. 2017. Cáncer y mitocondria: un aspecto central para el desarrollo y crecimiento tumoral. Medicina. 39, 1 (abr. 2017), 17–35.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2017-04-07

Número

Sección

Artículos de Revisión